
P

ORNL/TM-11850

Engineering Physics and Mathematics Division

Mathematical Sciences Section

ON FINDING MINIMUM-DIAMETER CLIQUE TREES

Jean R. S. Blair t
Rarry W. Peyton

t Department of Computer Science
University of Tennessee
Knoxville, 'TN 37996-1301

Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, T N 378314367

Date Published: August 1991

Research was supported by the Applied Mathematical Sci-
ences Research Program of the Office of Energy Reseaxch,
U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

managed by
Martin Marietta Energy Systems, Inc.

for the
U S . DEPARTMENT OF ENERGY

under Contract No. DE-ACO5-840R21400

3 4 4 5 6 0 3 5 8 2 4 4 2

Contents

1 Introduction .
2 Clique trees: background .

Definition of clique trees .
Maximum spanning tree characterization
Clique tree edges and graph separators

3 Leaf cliques .
3.1 A characterization of leaf cliques .

Maximum cardinality leaf sets .
A minimum-diameter clique tree algorithm .
4.1 A bottom-up clique tree algorithm .

4.3 Diameter minimization in the new algorithm
5 A linear time implementation .

5.1 Selection of a maximum cardinality leaf sct
5.2 Implementation details .

5.2.1 Representation of the chordal graph

Correct data to begin each iteration of the while loop
5.3 Complexity .

6 Concluding remarks .
7 References .
A Notation .

2.1
2.2
2.3

3.2
4

4.2 Incorporating maximum cardinality leaf sets in the algorithm

5.2.2
5.2.3

Correct implementation of one iteration of the while loop
.

1
2
3
3
4
6
6
8
9

10
12
15
17
18
20
20
22
25
25
26
28
31

O N FINDING MINIMUM-DIAMETER CLIQUE TREES

Jean R. S. Blair
Barry W. Peyton

Abstract

It is well-known that any chordal graph can be represented as a clique tree
(acyclic hypergraph, join tree). Since some chordal graphs have many distinct
clique tree representations, it is interesting to consider which one is most desirable
under various circumstances. A clique tree of minimum diameter (or height) is
sometimes a natural candidate when choosing clique trees to be processed in a

parallel computing environment.
This paper introduces a linear time algorithm for computing a minimum-

diameter clique tree. The new algorithm is an analogue of the natiiral greedy
algorithm for rooting an ordinary tree in order to minimize its height. It has poten-
tial application in the development of parallel algorithms for both knowledge-based
systems and the solution of sparse linear systems of equations.

Key words.
diameter tree.

Chordal graph, clique tree, minimum spanning tree, minirnurn-

AMS(M0S) subject classifications. 68R10, 05C65, 65F50, 68Q25.

- v -

1. Introduction

Chordal graphs arise in several application areas including data-base management sys-

tems [1,11,30], knowledge-based systems [3,19,22], and the solution of sparse symmetric

linear systems of equations [15,23,25,26,28]. A clique tree representation of a chordal

graph often reduces the size of the data structure needed to store the graph, permitting
the use of extremely efficient algorithms that take advantage of the compactness of the
representation [22,23,30]. However, using a clique tree to represent a chordal graph is
an ambiguous proposition in the sense that there may be more than one clique tree

for a given chordal graph. In fact, Gavril, IIo, and Lee [14,17] have shown that a
tight upper bound on the number of distinct clique trees is an exponential function of
the number of nodes in the graph. It is interesting from a theoretical point of view
and potentially beneficial from a practical standpoint to consider how one clique tree

representation may be better than another in a given context.
The algorithm presented in this paper is motivated primarily by the following ques-

tion: Which clique trees are most suitable as input for parallel algorithms in various
application areas? In at least some cases, a clique tree of minimum diameter (or,
equivalently, minimum height)l is a natural candidate. In particular this is the case
when the parallel algorithm in question has a leading (or otherwise significant) term
in its time complexity that grows with the height of the clique tree. For the last two
application areas mentioned above, we are aware of parallel algorithms under study
for which this holds. Discussion of thesc application areas appears in the concluding

section.

The essential character of the algorithm introduced here is very simple. Consider

the problem of selecting a root that minimizes the height of a tree T . One way to solve

this problem is a simple greedy algorithm that repeats the following major step until

there are no nodes remaining in the tree: determine the leaf nodes (i.e., nodes of degree
one) of the current tree and eliminate cach of these nodes and the single edge incident

upon it. The last major step eliminates either one or two nodes, and the height of T is
minimized by rooting it at one of these nodes.

The algorithm presented here for finding a minimum-diameter clique tree is an

analogue of this algorithm: it eliminates a large set of “leaf c l i ~ u e s ~ ~ from the current
chordal graph at each major step. One issue to be addressed is how this large set
of leaf cliques can be computed with no a priori knowledge of a clique tree in which

they are leaves. The first set of results deals with this issue. Subsequent results link

the property of having a rnazirnurn number of leaves with reduction of the distances

between cliques, after which it is quite easy to prove that the new algorithm works
correctly.

Our algorithm is a greedy algorithm, and other greedy algorithms closely related

‘This equivalence holds because a clique tree can be rooted at any node.

- 2 -

to ours have appeared in the literature [15,25]. It should be notcd that a minimum-

diameter clique tree can be obtained easily from the output of an algorithm presented

in Gilbert and Schreiber [15]. Moreover, the number of major steps in that algorithm is
the height of a minimum-diameter clique tree. IIowever, clique trees were not the object

of study in [15], and furthermore the authors do not prove that the number of major

steps is minimized. A simple extension of the analysis in this gapes demonstrates that
the algorithm in [15] does use the minimum number of major steps, and consequently
has associated with it a minimum-diameter clique tree.

We hope the reader will find the lernrnas and propositions leading up to our main
result interesting in their own right. In selecting notation and organizing the material,
we have striven to make the results easily accessible t o as broad an audience as possible.
More specifically, the results presented here may be of some value in providing a broad

spectrum of readers with a more concrete grasp of the primary features and essential

nature of clique trees and the chordal graphs they represent. In keeping with this
expository goal, we have chosen to make most of the presentation as self-contained as

possible; €or example, we have included the proofs of two key results in the published
literature.

Section 2 introduces some terminology and
provides background results on clique trees. Section 3 contains a characterization of
leaf cliques and also discusses clique trees that have as many leaves as possible. The

new algorithm and its proof of correctness are found in Section 4. Lewis et al. [23]
contains many of the details required to demonstrate that the new algorithm has a

linear time implementation. Section 5 briefly outlines essential material from [23],
presents a detailed version of our algorithm that addresses several key implementation
issues not addressed in [23], and presents other material needed to verify the linear

time complexity of the algorithm. Concluding remarks can be found in Section 6.

The paper is organized as follows.

2, Clique trees: background

This section contains terminology and background material on clique trees. We as-
slime the reader is familiar with standard graph terminology (see, for cxarnple, Golorn-

bic [16]). For easy reference we have included, in an appendix, a table of informal
definitions for most of the notation introduced here and in later sections of the paper.

‘Yo make the notation easier to read, we adhere to the following.

1. When needed, a subscript is used to identify which chordal graph or clique tree

the item pertains to. This subscript is suppressed where the relevant graph is
kpiown by context.

2. In almost every case there is a strong mnemonic association between the symbol

and what it represents: ?’ for trees, I< for cliques, etc.

- 3 -

2.1. Definition of clique trees

Let G = (V, E) be a chordal2 graph and KG = { K l , K 2 , . . . , ICnz} be the set containing
the maximal cliques3 of G. Throughout this paper, the graph G is assumed to be
connected merely to avoid vacuous technical chitter in the proofs. That all definitions
and results contained in this paper generalize immediately to disconnected chordal

graphs should be readily apparent.
While many characterizations and properties of chordal graphs have appeared in the

published literature [1,6,12,16,28], we restrict our attention to those results connecting
chordal graphs to clique trees (also called acyclic hypergraphs or join trees). Our
departure point in defining clique trees is the following well-known result, which we

state without proof.

T h e o r e m 2.1 (Walter [31], Gavril [13], Bunernan [4]). A graph G = (V , E) is
chordal i f and only i f there exists a tree 7‘ = (I&,€) that satisfies the following
property: €or every node v E V , the set of cliques containing v induces a subtree o€T.

For any chordal graph G, we shall let 7G denote the set of all trees T = (K G , €) that

satisfy this property, and we shall refer to any member of 7;: as a clique tree of the
underlying chordal graph G.

2.2. M a x i m u m spanning tree characterization

Associated with each chordal graph G is a clique intersection graph defined as follows.
The node set of the clique intersection graph is the set of cliques KG. Two distinct
cliques K and K‘ are connected by an edge if their intersection is nonempty; moreover,

each such edge {A’, K’} is assigned a positive weight given by IK 17 K’I.
Bernstein, Goodman, and Gavril [2,14] have shown that the set of clique trees .I,

is precisely the set of maximum-weight spanning trees of the clique interscction graph

associated with G. The proof of this result, included here in Theorem 2.2, closely

follows the one found in Gavril [14]. To prove Theorem 2.2 and later results we need

the following simple corollary of Theorem 2.1.

Corollary 1. A tree T = (KG, E) is a cliyue tree o f G if and only i f for every pair o f
distinct cliques K , K‘ E K G , the interscction K n K’ is contained in every cliyue on the
path connecting K and h” in tho tree.

Proof The result follows easily from the definition of clique trees and the fact that the

intersection of any two subtrees of a tree is likewise a tree. I

2A graph is chordal (triangulated, rigid circuit) if every cycle of length 2 4 contains a chord, Le.,
an edge connecting two non-adjacent nodes in the cycle.

3Throughoiit this paper the term clique always refers to a maximal clique. The term maximal clique
is used only where emphasis on maximality seems warranted. To avoid confusion, any submaximal clique
is referred to as a complete subgraph of G.

- 4

Theorem 2.2 (Rernstein [2]). A tree T = (K G , E) is a clique tree of G if and only

if i t is a iiiaxirnimm-weight spanning tree of the clique intersection graph of G.

Proof. First, assume T is a clique tree and choose two cliques Ir‘ and K‘ not connected
by an edge in T . Consider the cycle formed by adding the edge {Ii,K’) to T . By
Corollary 1, every edge along this path has weight no smaller than IIi n K’l. It is
well-known that a tree with this property is a maximum-weight spanning tree of the

graph (see, for example, [29, pp. 71-72]).

Now, suppose that ?hst is a maxiinurn-weighted spanning tree of the clique inter-
srction graph of G. Let !LLt be a clique tree having a maximum number of edges in

common with Tmst. Assume for the piirpose of contradiction that there is an edge

{1<1,1<2} of Thst that is not an edge of Y i t . Let TI = (K1 ,E l) and T2 : (& , E 2) be
the two subtrees of Ymst obtained by removing the edge { I < l , l < 2 } from Tmst. Note

that { I C 1 , & } partitions K C , and associated with this partition is a cut set of edges
consisting of all edges in the clique interectinn graph with one end-point in 1c1 and the
other in &. It is well-known that any cycle in the clique intersection graph containing
one edge from the cut set must contain another edge from the cut set as wcll. Now,
consider lite cycle (in Tct) obtained by adding the edge {ICl , IC2} to Tct, and select from

this cycle in 7Lf one of the edges { 1 < 3 , I < 4 } # {ICl , I<,} that belongs to the cut set.
Note that {I<3,1<4} is an edge of Tct, but it is not an edge of Tmst. Since T,, is a

clique tree, it follows froin Corollary 1 that I i l n IC2 C Ir‘3 n Kq. However, if IC1 n K2
were a proper subset of IC3 n IC4. then replacing {Ici, ICz} in Tmst with { f C 3 , IC,} would
result in a spanning tree of greatcr weight, contrary to the maximality of Tmst’s weight.

Hence, IC1 fl IC2 = K 3 n l<z l . Consider the tree obtained by replacing { I C 3 , K 4 } in 'let
with the edge {1<1,1<2}. LVe leave it for the reader to verify that the resulting tree
satisfies Theorem 2 1 , and is thus a clique tree of G. ‘l’his new clique tree moreover

has one more edge iii common with TInSf than originally possessed by Tct, giving us the
contradiction me seek. Conseqiiently, 2’fil,, - Tct and the result holds. is

2.3. Clique tree edges and graph separators

A node separator S c I/ for two nodes Q and b is any node set whose removal from
G results in a graph in which a and b are in separate connected components. If no
proper subset of S’ has t h i s property, then S is said to be a rnininzal a-h separator.
A well-known result states that a graph G is chordal if and only if every minimal a-b
separator is a complete subgraph of G [6,16,28]. For any clique tree T = (K,, E) E 7~
consider the rnultiset defined by

M T := { I ; n I<’ I {I<,I<’} E E } .

- 5 -

Ho and Lee [18] showed that for each minimal a-b sepa,rator S of C , MT contains a

number of copies of S that does not vary with T . (For brevity, we will refer to each
member of M T as a separator.) Below, we provide a simple proof of the invariance of

M T over all clique trees T E 7 ~ , which can be viewed as a weaker form of the result
in [18].

Theorem 2.3 (Ho and Lee [IS]). The rnirltiset of separators is the same. for every

clique tree T E 7 ~ .

Proof. For the purpose of contradiction, suppose there exist two distinct clique trees

T,T' E 7G for which M T # M T ~ . From among the cliquc trees T' E 7 G for which
MT, # M T , choose T' so that it shares as many edges as possible with T . (Note

that T and 1' cannot share the same edge set, for then they also would share the same
multiset of separators.) Let {Kl, K 2 } be an edge of T that docs not belong to TI.
Consider the cycle obtained by adding the edge { K 1 , K 2 } to T'. There must be an

edge (K 3 , h'4} of the cycle that is contained in T' but not in T . From Corollary 1 and

Theorem 2.2 it follows that K 3 n IC4 = ,Til n K 2 . By Theorem 2.2, replacing (K3, K4}
in 1' with {IC1, K 2 } results in a clique tree, and moreover the multiset of separators is
the same as that of T'. Since the modified tree shares one more edge with T , contrary

to our assumption about TI, the result follows.

Henceforth, let M G denote the multiset of separators associated with each clique
tree in IC. For any set of nodes S C V , the set of cbiques containing S , denoted by

K (S > , is given by
K(S) := (K E K;G I s c IC}.

(Usually S will be a separator taken from MG.) It is worth emphasizing that every

separator S E M G is contained in at least two cliques (Le., IlC(S)l 2 2).

For any clique IC, the set of separcltors belonging to K , denoted by S (K) , is given

by
S (K) := { S E M G I S C IC}.

Note that S (K) contains one copy of each member of the niultiset NG that is contained

in K . The set S(K) contains each separator from S (K) that is maximal with respect
to set inclusion among the members of 5(A7. In other words, S(K) is given by

-
S (K) := { S E S (K) I S is properly contained in no separator S' E S (K) } .

Loosely speaking, the following simple lcmrna states that in any clique tree the members

of S(f<) must be "used" by at least one of the tree edges incident on K.

Lemma 1. Let K E K;G and 7' E TG. Thcn for every separator S E g(X) there is at

least one edge { K , K'} of T for which K n K' = S .

- 6 -

Proof. Choose a separator S E S(K) , and choose P E K (S) - {IC}.4 Consider the
path A' = K 1 , P i 2 , . . . , Ii, = P from K to P in T . It follows from Corollary 1 that
S C IC; for 1 5 i 5 T , and hence S C K n h'2. From the maximality of S among the
separators in S (K) we have K n K2 = S , which proves the result.

3. Leaf cliques

For any clique tree T E Tc;~ let LT (C KG) be the set containing the leaves of T
(i.e, the members of K G with degree one in 7'). We then let LG, the leaf cliques of

G, be the set containing every clique that is a leaf in a t least one clique tree 2' E
TG. Practical iniplemen tation of our minimurn-diameter clique tree algorithm requires
access to the set Lc. 'The first subsection below contains a simple characterization

of LG that ultimately leads to an efficient method for computing LG. With LG in

hand, the minimum-diameter clique tree algorithm must then compute a set of leaf

cliques C,,, C LG such that L,,,, = CT for at least one clique tree T E '&, and
moreover IE;.I 2 I LT~~ for every clique tree T' E TG. The second subsection contains
a characterization of these inazirnum cardinclity leaf sets Ern,, C: CG. An efficient

method for computing LmaT is presented later in Section 5.1.

3.1. A characterization of leaf cliques

The next lemma gives a suficient condition for membership in Cc. ' rhe proof of
this lcm~lla and the spceific clique tree T' constructed in the proof are important
departure points in the next section. Lemma 3 confirms that the condition in Lemma 2
is necessary as well a.s sufficient.

Lemma 2 . Jf I%(P<i>l L 1, thcai li is a leaf in some clique tree T' E 7G.

Proof. Let S be the sole member of s(Ii) , and suppose that li is not a leaf of T E 7~
(see Figure 3.1). Choose P E K (S) - {IC}. It follows from Corollary 1 that S C P'
where P' is the clique adjacent to li' on the path from Ii to P in T (possibly Y p = P) .
Consider a clique C1 # P' that i s also adjacent to In' in T . (Such a clique must exist

since h' is not a leaf in T.) By Corollary 1, C1 n P g C1 n li. Furthermore, since S is

the only member of s (I C) , we have C1 n I< C S e P. It follows that C1 n Ii == c'1 n P ,
and hence the edges {Cl, Pi} and {Cl, P } have the same weight. 'rhus, by Theorem 2.2
the tree obtained from 'I' by first removing the edge {Cl, Ii} and then adding the edge
{Cl , P} is also a clique tree. Repeating this process for every clique C, + I" adjacent
to li in 1', we obtain a new clique tree Y " in which I< is a leaf (see Figure 3.1), and

*Thronghout this paper the binary set difference operator i s "-".

- 7 -

Figure 3.1: Transformation of T into T’ in which K is a leaf, as discussed in the proof
of Lemma 2.

this concludes the proof.

The spccific operation that transformed the clique tree T (in which I(is not a leaf)
into the clique tree T‘ (in which K is a leaf) will be used in several subsequcnt proofs.

We note here that the parameters required for this operation are a clique tree T , a

leaf clique K E CG - CT and an arbitrary clique P # IC for which S(X) = (IC n Y } .
When P is not adjacent to K in T , these two cliques determine a third clique of

interest, namely the clique P‘ adjacent to K on the path in T connecting K and Y.
Since K n P‘ = K n P , P’ can play thc role of P , as will be the case in an important
application of this operation in Section 4. However, when this operation is used in
other proofs, P will be chosen in such a way that it may not be adjacent to K.

The next lemma completes the first characterization of the cliques in CG.

Lemma 3. IC E CG ifand only if IS(K)l = 1.

Proof. Sufficiency follows iniinediately from Lemma 2. To prove necessity, choose
K E CG and let T E 7~ be a clique tree in which 11‘ is a leaf. Let 1” be the single

clique adjacent to K in T . Since K n P’ is the only separator associatcd with an edge
incident on K in T , it follows from LcrnIna 1 that K n P’ is the only member of F(IC).

A node in an ordinary tree is a leaf if it has only one neighbor. Lemma 3 is an

analogue of this property for leaf cliques of a chordal graph. That is, a clique in a

- 8 -

chordal graph i s a leaf clique if it has only one maximnl separator through which it can
he joined to neighbors in a clique tree.

3.2. Maximum cardinality leaf sets

It is interesting to consider precisely which subsets of CG constitute a set of leaves LT
for at least one clique tree 7’ E ‘fc. However, for our purposes we restrict OUT attention

to a simpler question, that of characterizing the leaf sets t r of maximum cardinality.

That is, we need a useful characterization of the leaf sets LT for which 2 ICpl
for every clique tree T’ G ‘TG-

To that end, w e introduce sone more notation. We have shown in Lemma 3 that
each leaf clique K E Cc; has associated with it a single separator S E M G that is

maximal among the separators contained in K . Let S(&j be the set containing a

siilgle copy of each separator associated with a leaf in this manner. More precisely,

For every Eeafsepamtor S E S(&j, let L (S) be the subset of LG defined by

L(5’j := (IC E L G 1 S(K) = { S } } .

More informally, L(S) contains the “cohort” of leaf cliques clustered around the leaf

separator S . It is important to note that C (S) may be a proper subset of the set of
leaf cliques that contain S . For two leaf separators S , SI E ~ (C G) where S C SI, any
clique I< E t (S ’) contains both leaf separators S and S I . In this case, however, we
observe that Ii # L(S) even though A’ E K (S) . Indeed, each leaf belongs to precisely
one leaf cohort set, and therefore the collection of leaf cohort sets

forms a p r t i t i on of LG.

Lemma 4. Assume llC~.l 2 3. For a leaf sepra tor S E S(I&Gj, there exists a clique
tree T E TG €or which C (S) C CT i€and only i f C(S) c K (S) (i.e., K (S) - L (S) f a).
Proof. Choose a leaf separator S f s(&) and assume that L (S) 5 CT for some
clique tree I1’ E TG. It follows from Corollary 1 that IC(S) induces a subtree of ?’. Since
~KGI 2 3 and IK(S)l 2 2, X(S) contains an interior clique P of T (i-e., Y E K(,ci>-Lrr.>.
Since C (S) C_ CT, we have P E K(S) -- L (S) , completing the first half of the proof.

To prove thc converse assume K (S) - L(S) # 0, and let P E # (S) - L(S) . Let

T E T G ~ and suppose that there exists a clique IC E L (S j - Cf. As in the proof of
Lemma 2 (sce Figure 3.1), we can replace each edge {C,It’} incident on K (except
{A’, Pi)) with the corresponding edge (6, P } to obtain a clique tree T‘ in which I< is a

- 9 -

leaf. Repeating this operation for each clique in C(S) - CT transforms T into a clique
tree T' for which L(S) Cp, giving us the result.

Lemma 5. Assume l K ~ l 2 3. Then l C ~ l 2 ICpI for every T' E 7~. if and only if T
has the following two properties:

I. For S E ~ (C G) , if t (S) c K (S) , then t (S) C_ CT.

2. For S E S(Cc) , if L (S) = X;(S), then CT contains a.ll but one of the cfiques in

W).
Proof. Suppose properties 1 and 2 hold. By Lemma 4, if L (S) = K (S) , then for every

clique tree T E 7~ at least one member of L (S) is excluded from LT. It follows that
no clique tree can have more leaves than one that posesses properties 1 and 2.

Suppose property 1 does not hold for some clique tree T E TG. Then for some
leaf separator S E ~ (C C ,) for which L (S) c K (S) we have a clique K E L (S) that
is not a leaf of T . Since IK,l 2 3 and]lC(S)l 2 2, we can choose an interior clique

P E K (S) - CT. As in the proof of Lemma 2 (see Figure 3.1), we can replace each edge
{C, K } incident on K (except {K, P'}) with the corresponding edge {C, P} to obtain

a clique tree T' in which Ii is a leaf. Note that P is the only clique in T' with more
neighbors than it had in T . Since P is not a leaf in T and all leaves of T remain leaves
in T', it follows that T' has one more leaf than T , and hence property 1 holds for any

clique tree that has the maximum number of leaves.

A similar argument can be used to verify property 2, as follows. Suppose property 2
does not hold for some clique tree T E 7 ~ . Then IL(S)-C,l # 1 for some leaf separator

S E ~ (C G) for which C (S) = Ic(S) . From Lemma 4 we know that I L (S) - LTI # 0.
Thus, we have two or more cliques in C (S) that are not leaves of T . Let li and P be

two such cliques. From this point, the argument runs the same course as that found in

the previous paragraph, completing the proof.

Lemma 5 characterizes maximum cardinality leaf sets Cmnz: for each leaf separator

S E ~ (L G) , either all of the lea,f cliques from L (S) are included in Lc,,,, or all but
one of the leaf cliques from t (S) are included in L,,,. Furthermore, exclusion of a

single clique of C(S) from t,,, occurs if and only if the only cliques containing S are
those in C (S) (;.e., K (S) = L(S)) .

4. A minirnum-diameter clique tree algorit hin

The characterization of maximum cardinality leaf sets given in the previous section
provides the basis for an algorithm that generates minimum-diameter clique trees from
the bottom up (i.e., from the leaves up to the root). This section gives a high-level

- 10 -

description of our bottom-up algorithm and proves that it does indeed generate a

mimimum-diameter clique tree.
Algorithms for generating clique trees are based on the detection of simplicial nodes,

which are defined as follows. A simplicial node in G is any node whose adjacency set

forms a complete subgraph in G. It is well-known that any non-trivial chordal graph has

at least two simplicial nodes [6], and moreover that any chordal graph can be reduced

to the null graph by successive removal of simplical nodes [6,12,16,25]. The order in

which the simplicial nodes are removed i s known as a perfect elimination ordering. It
is trivial to show that a node is simplicial if and only if it belongs to precisely one

maximal clique. This simple characterization of simplicial nodes has been useful in
various applications. The result is stated formally and proved in [21,23], and it is
stated informally and used without proof in [8,15,30].

Maximum cardinality search [30] i s a linear-time algorithm for generating a perfect
elimination ordering of a chordal graph. With a few simple extensions, this algorithm

can also generate the set of cliques KG and the set of edges E of a clique tree T E
7 G [3,26,30]. Blair et a]. [3] have shown that this algorithm for generating a clique tree

can be viewed as Prim’s algorithm [27] for finding a maximum-weight spanning tree of

the clique intersection graph of G. The algorithm presented in this paper however does

not fall within this general framework, where the clique tree is generated from a known
root in top-down fashion to the leaves. Instead, the new algorithm must generate a

clique tree from an initial set of leaves in a bottom-up fashion, eventually determining

a root clique that is not known in advance.
The next subsection describes an algorithm for generating an arbitrary clique tree

from the bottom up by successive removal of leaf cliques from the chordal

graph. This approach to generating clique trees is refined in Section 4.2 where we

present our new algorithm, which removes a maximum cardinality leaf set at each
major step. Our main result, presented in Section 4.3, demonstrates that a clique tree

generated by the new algorithm also has minimum diameter.

4.1. A b o t t o m - u p clique tree algorithm

To describe the bottom-up algorithm for generating an arbitrary clique tree, we need
the following definitions and notation. For each clique K E KG we define the parameter

p (K) to be the number of simplicial nodes contained in K . Another needed parameter

is o(h’), defined to be the size of the largest separator in ‘S(K). Lemma 6 contains a
formula for .(IC) that is useful in Section 5 . Lemma 7 uses the parameters .(I<) and
p(K) to characterize Cc.

Lemma 6. ForK E KG,

- 11 -

Proof. Let K , K ' E ?&. Applying Corollary 1 to any clique tree T E 7G, we have
K n K' C S for some separator S E S (K) . The definition of a (K) implies that
o(K) 2 1.K n IC'\, and implies moreover that there exists K" E Kcc; - {K} such that

a (K) = IK n K"I, which proves the result.

Lemma 7. K E LG if and only if a (K) + p (K) = IKI.

Proof. Suppose K E CG and let S be the single separator in S(K) (see Lemma 3).
From Corollary 1 and the fact that S(I<) = {S}, we have K n ICf C S for every clique
K' E KG - { K } . Hence, any node 21 E Ir' - S is found in no other clique of the

graph. Thus, we have p (K) 2 IK - SI, and since IK(S)l 2 2, none of the nodes in S is

simplicial. Therefore p (K) = JK - SI, which along with o(X) = ISl, proves necessity.
To prove sufficiency, suppose a(K) + p (K) = IKI. Choose S E S (K) such that

IS1 = o(K). Since p (K) = IKI - a (K) and none of the nodes in S are sirnplicial, every
node in K - S is simplicial. Since each simplicial node belongs to only one clique, it
can belong to no separator in M G . Consequently, S(K) = { S } , and by Lemma 3,
K E C G .

From Lemma 7, it is clear that any leaf clique li E tc; can be partitioned into two

sets
K = Sim(K) u S e p (K) ,

where Sim(li') contains p (K) simplicial nodes and Sep(K) contains the o(K) nodes
that constitute the leaf separator associated with K .

Our bottom-up algorithm for generating a clique tree is based on successive elimi-

nation of leaf cliques from the chordal graph. For K E Lc;, G \ Sim(K) denotes the

graph obtained by eliminating the simplicial nodes in S i m (K) and their incident edges

from G. In other words, G \ Sim(1i) is the subgraph of G induced by V - Sim(K) .
Since S e p (K) , which contains the nodes of K remaining in G \ Sim(K) , is contained

in a t least one other maximal clique K' of 6, K disappears from G \ Sirn(K) as a
maximal clique, and can be viewed as "absorbed" by ICf. Moreover, since the nodes

of Sim(K) belong to no other maximal clique of G, the other maximal cliques of G
remain unchanged in G \ S im(K) . Thus, G \ Sin%(K) is precisely the chordal graph
whose set of maximal cliques is given by Kc; - {X}.

Figure 4.1 displays an algorithm for generating a clique tree from the bottom up,

and Lemma 8 confirms that the algorithm is correct. Note that the algorithm generates
a sequence of chordal graphs. From now on a subscript is used, as needed, to identify

which graph a set or parameter pertains to (e.g., 5 ' i m ~ (K) in line 7 of the algorithm).

Lemma 8. The algorithm in Figlire 4.1 generates a clique tree.

Proof. It is easy to show that the edge set contained in E at the end of the algorithm

is the edge set of a tree T , and we leave it for the reader to verify this. Thc proof

- 12 -

01
02
03
04
05
06
07
08

E + 8
I€ +- G
while lKnl 2 2 do

Choose K EI: CH
Choose P E KH - { K } for which SepH(K) C P
E + E U { K , P }
H + FI \ SirnH(1i)

end while

Figure 4.1: Algorithm for generating a clique tree.

that T is indeed a clique tree is by induction on the number of cliques in the graph.
The base step is trivial. For the induction step, let G be a chordal graph with ‘m 2 2

cliques, and suppose that the algorithm generates a clique tree for any chordal graph

with fewer than m cliques. Let K and Y be, respectively, the first leaf clique and the
first “parent” clique chosen by the algorithm, so that {IC,P} is the edge added to E
during the first step. From the way the edges are chosen, Ii is necessarily a leaf of

7’. Let ?“ = T \ {IC}. Clearly, 1’’ is the tree generated by subsequent steps of the
algorithm. Moreover, steps 2 -m of the algorithm axe precisely the sanw a s applying

the algorithm directly to the graph G \ Sim,(K) with no prior elimination step. It
follows from the induction hypothesis that T’ is a clique tree of the chordal graph
G \ Sim(K). Consequently, Corollary 1 holds in T for every pair of cliques taken from

KG - {K}. All that remains to be shown is that for every clique K’ E B&c -- { K } , the

intersection fi n K’ is contained in every clique on the path connecting K and Ii’ in
7‘. The statement is vacuously true i f f<’ = P; thus we assume Ii’ # P. Since K E LG

and Sepc(fi) C P (see line 5 of the algorithm), we have

Moreover, by the induction hypothesis, P n li‘ is contained in every clique on the path

connecting P with IC’, which obtains the result. E

4.2. Incorporating maximum cardinality leaf sets in the algorithm

The new minimum-diameter clique tree algorithm is a special case of the algorithm in
Figure 4.1. It is however a bit more complicated, with an outer loop that selects a

maximum cardinality leaf set C,,, to be removed at each major step, and an inner
loop that reiiioves the members of C,,, one after another in arbitrary order. Clearly,

- 13 -

this approach is based on the assumption that elimination of a clique I< E L,,, by an

iteration of the inner loop causes none of the uneliminated cliques K‘ E C,,, to become

a non-leaf in the reduced graph. To address this issue, let T E 7 G and I< E C T , and

consider the reduced graph G‘ = G\Sim~(lr‘) and the tree T’ = T\{K}. The following
simple lemma contains the properties of G‘ and T’ needed to deal with this issue and

other closely related issues associated with our algorithm. (The fourth property is
needed elsewhere, but it is most convenient to include it here.)

Lemma 9. Let T E 7 G and K E CT, and consider T’ = T \ {K} and G’ = G \
Sirnc(K). The following properties hold for G, T , G’ and T’:

1. I” E TGI.

2. L T - { I { } c CTt c Lcl.

Proof Let K‘, I<’‘ E 1cct = Kc - { K } . From the definition of T and T’, it follows

that the path connecting K’ and K” in 7” is identical to the one connecting the pair
in 2”. Thus, from Corollary 1 (applied to T E 7 G) we have T’ E 7&. Clearly, any leaf
in LT - { K } remains a leaf in T‘, and thus LT - {K} C L T ~ C & I .

Choose K’ E CT - {K} and let {IC’ , A’”} be the single edge incident on K’ in 2”.
Since {A”,K’‘} is also the single edge incident on K’ in T’, it follows from Lemma 1
that K‘ n I<” = SepGt(K’) = SepG(1r”). Futhermore, since lK’l i s unchanged and

K’ E Cp, by Lemma 7 we have S im~t (K‘) = Sinzg(K’). Finally, the fourth property

(h., M Q = M G - { S e p G (l c) }) is an imniediatc consequence of property 1 and the
definition of separator multisets.

/
Our algorithm for computing a minimum-diameter clique trce is shown in Figure 4.2.

At the beginning of each major step (i.e., each iteration of the while loop), H is the

chordal graph remaining to be eliminated. After selecting a maxiinurn cardinality leaf

set L,,, in line 4, the inner loop (lines 5-9) eliminates the leaf cliques in Cmax one at

a time in some arbitrary order.
Let T E 7 G be a clique tree for which LT is the leaf set L,,, C CG chosen for

elimination during the first iteration of the while loop. Applying Lemma 9 to T , we

justify several details found in the inner loop with the following remarks.

Remark 1. Line 6 assumes the existence of an appropriate “parent” I-’ E XH -
L,,, for each leaf Ii’ E L,,,. For each K E C,,,, the single clique P adjacent to
K E CT is such a parent.

- 14 -

01 Em,, + 0
02 H G; II' - G
03 while l ? C ~ l 2 3 do
04 Choose a inaxirnum cardinality leaf set C,,, C LJJ
05
06
07
08
09 end for
10 H +-- H'
11 end while
12 if IFCHI = 2 do
13
14 end if

for K E c,,,,, do
Choose P E 1 c ~ - L,,, that also contains S e p H (K)

Em,, + Em,, u { I c , P }
H' +- H' \ ,Qimff(K)

F,,,, t E,,, U { K , P> where {li, P } = ?CH.

Figure 4.2: Algorithm for generating a minimum-diameter clique tree.

Remark 2, Properties 1 and 2 ensure that after the removal of a leaf clique in

the inner loop, the uneliminated members of Lma, remain leaves in the reduced graph,

as required during subsequent iterations.

Remark 3. Properties 1 and 3 ensure that , Q e p H , (K) = S e p ~ (1 i ') and S i r n ~ , (K) =
S i m ~ (1 i) for each leaf clique X E C,,,, in the reduced chordal graph. In other words,

not only do the leaves in L,,, remain leaves as the inner loop progresses through the

eliiiiination steps, they also retain the same separator and simplicial node sets that they
had when chosen for elimination at the beginning of the major step. The invariance of
these two sets is used explicitly in lines 6 and 8 of the algorithm.

The followirig lemma plays a key role in the next subsection where we prove that

any clique tree generated by the algorithm has minimum diameter.

Lemma 10. The algorithm in Figure 4.2 generates a clique tree T for which CT =
L:,,, C_: LG is the maximum cardinality leaf set eliminated by the first major step o f
the algorithm.

Proof. As in the proof of Lemma 8, we leave it for the reader to verify that the new
algorithm generates a tree. It follows from R,emark 2 that the new algorithm is a
special case of the algorithm in Figure 4.1, and therefore by Lemma 8 the tree Tals
generated by the algorithm is a clique tree. Consider the maximum cardinality leaf set

L,,, 5 CG eliminated by the first major step of the algorithm. During the first major

- 15 -

step, the algorithm adds to Emin precisely one edge incident on K for each K E t m a , .

Since each clique K E t,,, is eliminated during this first step, none of the edges added
during subsequent steps can be incident on K . It follows that each clique in t,,, is
adjacent to only one clique in Talg, and thus C,,, C CT,~, . Since t,,, is a maximum
cardinality leaf set, C T , , ~ = t,,,, which concludes the proof.

4.3. Diameter minimization in the new algorithm

For any clique tree 1' E 7~ and any pair of cliques K , K' E Kef, let &(IC, I{') be the

distance from K to K' along the single path Connecting the pair in T. The diameter of

T is given by diam(T) := niax {&(IC, K')}, where K and K' range over every distinct

pair of cliques taken from KG. Of course, it suffices to limit the range of K and K'
to every distinct pair of leaves taken from CT. This section proves that the algorithm

in Figure 4.2, in fact, finds a clique tree Tmin that minimizes diam(T) over all clique
trees T E 7G. This is, of course, equivalent to finding a clique tree of minimum height.
To proceed, we show in Lemma 11 that when P = 9' in the proof of Lemma 2 (see

Figure 3.1), the diameter of the new tree is no more than the diameter of the original
tree. We then show that for any maximum cardinality leaf set L,,,, there exists a

minimum-diameter clique tree Tmin E 7~ for which CT,,, = C,,,, after which the
main result follows by a simple induction argument.

Lemma 11. Assume lKcl 2 3. Let K E C (S) and suppose K is not a leaf of the
clique tree T E 7 ~ . Let 1' be a neighbor of K in T such that K n P = S . Then there
exists a clique tree T' E 7G for which the following properties hold:

1. K is a leaf of 7''.

2. The sole difference between T and Ti is that each edge {e, K } incident on K in
T , with the exception { P , K } , has been replaced with the edge {C, P } in T'.

3. diurn(T') 5 diam(1').

Proof. First, note that the existence of a neighbor P of li in T for which K n P =
S = S e p (K) is ensured by Lemma 1. Now consider the restructured clique tree T'
produced in the proof of Lemma 2 when P = P' (see Figure 4.3). That the first two

properties hold for T and T' follows directly from the proof of Lemma 2. To verify

the third property, first note that the only paths whose lengths are longer in T' than
they are in T are those connecting K to some node K' in one of the moved subtrees.
Moreover, the path connecting Ii and 11'' in the restructured tree is no longer than the
path connecting li" and P in the original tree (see Figure 4.3). It follows that making
all the neighbors of IC (except P) neighbors of P cannot increase the diameter. w

- 16 -

Figure 4.3: Transformation of 1’ into T’ in which K is a leaf and for which diam(T’) 5
diain(T) , as discussed in the proof of Lemma 11.

Lemma 12. Assume l l C ~ l 2 3 and let T E 7 G be any clique tree for which ILTI 2
I C ~ I I for all T’ E 7b. Then there exists a minimum-diameter clique tree T,,, E T,:
such that LT,,,, 1 L y .

Proof. Let T F 7~ be chosen as in the premise. Choose a minimum-diameter clique
tree T,,, 7~ for which CT-,,, contains as many of the leaf cliques belonging to C y
as possible. By way of contradiction, assume that LT,,,, # Lr. Since ICT(2 (LT- ,~(,

there exists a leaf cliqiw I< E CT - L T ~ , ~ . Without loss of generality, suppose that

K E L(S). Since l l C ~ l 2 3 and IK(S)l 2 2, at least one clique K’ E K (S) is not a leaf

in T .
Now consider the subtree of T,,, induced by K (S) . Let P E K (S) be the clique

adjacent to K along the path from 1; to I<‘ in the siibtree of T,,, induced by K (S)
(possibly P = K’). Observe that if P - 1;’) then P is not a leaf of T , and if P # K‘,
then P is not a leaf of T,,,. It follows that P is not one of the leaf cliques that T
and Yk,,, have in common. Thus, using JJemma 11 t o restructure T,,, (see Figure 4.3)
results in a clique tree also of minimum diameter, but with one inore leaf clique K in
common with T than originally possessed by T,,,. ‘This is contrary to our assumption
about T,,,, which concludes the proof. II

Recall that the tree obtained by pruning the set of leaves LT from T E TII is denoted
by Y’ \ LT. We let S i m n (L ~) be the union of all simplicial node sets S ’ i r n ~ (K) where
I< E CT. We are now ready to prove our main result.

- 1 7 -

Theorem 4.1. The algorithm in Figure 4.2 generates a clique tree of minimum diam-
eter.

Proof. That the algorithm generates a clique tree was proven in Lemma 10. The proof

that the clique tree has minimum diameter is by induction on m = IKcl. The base

steps m = 1 and m = 2 are trivial. Let G be a chordal graph with m 2 3 cliques and
assume that the algorithm minimizes clique tree diameter for any chordal graph with

fewer cliques. Let Tals be a clique tree generated by the algorithm.

CG chosen for

elimination during the first major step of the algorithm. Remarks 2 and 3 in the
previous subsection imply that the first major step eliminates the nodes in SimG(CTal,).
Clearly, Talg \ t ~ ~ , ~ is the tree generated by subsequent major steps of the algorithm.
Moreover, these Subsequent steps are precisely the same as applying the algorithm

directly to the graph G \ S i m c (L ~ ~ , ,) with no prior elimination step. It follows from
the induction hypothesis that Talg \ L T ~ ~ ~ is a minimurn-diameter clique tree of the
chordal graph G \ Simc(LTafg).

By Lemma 12, there exists a minimum-diameter clique tree Tmin E IC: such that

CT,,,, = Thus, Talg \ LTals and Tmin \ CT,,, are both clique trees of G \
Sim~(&,~,). It follows that

By Lemma 10, is the maximum cardinality leaf set t,,,

Note that whenever m 2 3, elimination of all leaves of any clique tree results in a tree

whose diameter has been reduced by two. Thus we can write

which proves the result. m

5 . A linear time implementation

With careful attention to details, we can devise a linear time implementation of our
minimum-diameter clique tree algorithm (;.e., an O(lVl + I GI) implementation). The
order in which the cliqiies are eliminated from H can be viewed as a block variant of the

Jess and Kees ordering. We refer the reader to [20,23,25] for a description of 1) the basic
Jess and Kees ordering scheme, 2) its use in minimizing the height of the elimination

- 18 -

trees associated with a sparse Cholesky factor [25], and 3) two implementations of

the algorithm [23,25]. Lewis et al. [23] describe a very efficient implementation of the

algorithm in great detail. Many of the techniques used in their implementation are
also helpful in devising an efficient implementation of the minimum-diameter clique

tree algorithm in Figure 4.2. Where appropriate, we refer the reader to [23] for details

that apply to both algorithms.6

clique tree algorithm. Section 5.1 presents an eficient algorithm for selecting a max-

iniurn cardinality leaf set L,,, C, LH in line 4 of Figure 4.2. Section 5.2 introduces
a detailed version of the minimum-diameter clique tree algorithm and verifies that it

correctly implements the algorithm in Figure 4.2. Finally, Section 5.3 demonstrates

the linear time complexity of the new algorithm.

This section discusses several implementation issues specific to the minimiim-diameter

5.1. Selection of a maximum cardinality leaf set

Consider the problem of selecting a maximum cardinality leaf set C,,,, C LH in line 4
of Figure 4.2. (Computing LH will be discussed later.) The algorithm to calculate

Lmnr, shown in Figure 5.1, considers each clique in LH in some arbitrary order. To

01 11’ t- H
02 &n&.T +- 0
03 far K E LH do
04
05
06
07
08 end

Figure 5.1: Algorithm for generating a maximum cardinality leaf set.

test A’ E LIT for inclusiori in f&,,, the algorithm checks to see if there has been no
change in the parameter a(K) . (That is, does o ~ ~ l (K) = ~ H (K) ?) The remainder of
this subsection is devoted to proving that this test can be used to obtain a maximum
cardinality leaf set t,,,, Cr LH. First, Lemma 13 gives a useful condition that holds if

5Note that the elimination tree is n o t a clique tree, and minimizing its height moreover does not
minimize the height of the associated clique tree.

‘The notation used in [23] differs a great deal from that found in this paper. For example, their
ancestor sets, Anc(h’), are the separators, and S (K) contains the simplicial nodes of K . Also note
that their definition of clique trees is more restrictive than the one we are using.

- 19 -

and only if c r ~ , (K) = c r ~ (K) , and then Theorem 5.1 proves the algorithm in Figure 5.1
correct.

Lemma 13. Let S E S(C,) and choose K E CH(S) C LH. When K is processed by
line 4 of the algorithm in Figure 5.1, qp(K) = CTH(K) if and only if l K ~ p (S) l 2 2.

Proof. Let K E C H (S) C CH, and consider the iteration of the algorithm that processes

K . By definition, axf(K) = 1S1. Tf l lC~,(S) l 2 2, then by Lemma 6, c r ~ ~ (l i) 2 \SI.
Since K H I c KH, it follows from Lemma 6 that CTH,(K) 5 CTH(K) = IS(. Thus,

By Lemma 6 if a~f,(K) = a l f (K) , then IK n K‘I = IS1 for some clique K’ E K H I -
{ K } . From Corollary 1 and the fact that S j y (K) = { S } , we have K fl K” 5 S for every

clique K” E I C H - { K } . Consequently, K n K’ = S, and therefore K, K’ E Kfp(S),
which proves the result. m

O H I (K) = aff(li).

Theorem 5.1. The algorithm in Figure 5.1 computes a ma.xirnum cardinality leaf set

~ m u x .

Proof. Consider the partition of into leaf cohort sets,

Lemma 5 gives the two conditions that must be satisfied by CmaZ: 1) when C H (S) C
K, (S) every cliqiie in L J ~ (S) must be included in L,,,, and 2) when C H (S) = K H (S)
precisely one clique in L H (S) must be excluded from L,,,. We will consider an
arbitrary leaf cohort set L l l (S) = { K I , K z , . . . , K t } C CH, with the cliques listed in

the order in which the algorithm processes them. (That cliques from other leaf cohort

sets may be processed between two neighboring cliques in the list will have no bearing

on the argument.)

First, note that IK,p(S)l 2 2 when the algorithm processes li;, 1 5 i 5 t - 1.

Therefore, by Lemma 13, CTH,(I~”~) = c r ~ (K ~) , and K; is included in C,,,. Now consider

whether or not the algorithm includes Kt in L,,,. There are two cases to consider.
First, suppose C H (S) = K H (S) . It follows that K H , (S ‘) = {Kt} when the algorithm

finally examines l C t . Consequently by Lemma 13, a ~ , (f i ~) # a ~ (I i ~) , and thercfore Kt
is not selected, as desired.

Now, suppose C H (S) c 1 c ~ (S) and consider the following two subcases. First,
assume Klg(S) L I T . Tn this case, l K ~ t (S) l 2 2 when the algorithm examines ICt,
and by Lemma 13, Kt is selected as desired. Now, assume K ~ ~ (S > C_ LH. Let JC’ E CH
be chosen so that IC‘ E K , (S) - C ~ (S) . It follows that K’ E LH(S ’) where 5’ c S‘ . The
key to the proof is to choose K’ that maximizes IS’/ among all the leaf separators S‘ E
~ (C H) for which 5’ c 5’’. Since S c S’, we have K H (S ’) 5 t c ~ (S) C L H . It suffices
to show that K,(S’) = Ll*(S’), for we have shown in the previous paragraph that if

- 20 -

ICH(S’) = L,(S’), then the “last” member of LN(S’) to be processed by the algorithm

is excluded from L,,, and thus retained in the graph H’ when K t is exammined by the

algorithm. Consequently, /KH,(S)I 2 2, and therefore Kt is included in Emax as
required. To verify that LH(S’) = lC~(s‘), assume that K” E ICH(S’) - Lw(S‘) . It

follows that K” E LH(S”) where S‘ c S”, contrary to the maximality of IS‘I. Thus,

we have K,(S’) = LH(S’) , which concludes the proof. s

5.2. Implementation details

We now turn our attention to a detailed version of the minimum-diameter clique tree

algorithm. This algorithm, presented in Figure 5.2, is essentially an expanded version

of the algorithm in Figure 4.2. Practically missing altogether from the short version is
the initialization phase comprising lines 1-8 in Figure 5.2. Line 4 in Figure 4.2 has been

expanded into lines 10-21, which implement the algorithm for finding Emaz displayed

in Figure 5.1 and also build a data structure used to record the cliques in Lmax and
the new edges of the minirnum-diameter clique tree. Using this data structure, lines
22-30 implement lines 6 and 7 of Figure 4.2, as well as construct the leaf set LH for
the next iteration through the main loop.

The remainder of this subsection takes a closer look at the detailed version of our

minimum-diameter clique tree algorithm and gives the arguments needed to prove that

it does indeed correctly implement the algorithm in Figure 4.2. We begin with a

description of the method used to represent the “current” chordal graph. After that ,

we focus on the correctness of the while loop (lines 3-10 in Figure 1.2, lines 9-32 in

Figure 5.2) that constitutes the bulk of the algorithm. In Section 5.2.2 we address the
question of correctness for one iteration through the while loop, assuming all data are

correct as the iteration begins. Then in Section 5.2.3 we argue that the data are correct
a t the beginning of each iteration through the while loop.

5.2.1. Representation of the chordal graph

The algorithm maintains a clique tree T’ f 7f1t and no other representation of the

reduced chordal graphs (lines 1, 13, 18); the chordal graphs N and R’ are “updated”

in the comments strictly for notational purposes (lines 1, 18, 31).
Initially, T‘ E 7 ~ . (Details on an appropriate choice of 2“ E 7~ are provided in [23].)

The clique tree T‘ is updated as each leaf clique is eliminated, much as FI’ is updated in
Figure 5.1 as the leaf cliques are eliminated. An elimination step performed during the

for loop in lines 11-21 removes K E LH from T” to obtain the next clique tree 1’‘ 7~ft
where H’ is the new reduced graph I€’ +- H‘\SimHI(I<) (line 18). When K E L p , the
reduced clique tree is computed by simply “pruning” K from T‘ (i.e., T‘ c- T‘ \ { K }) .
However, when A’ C T , , the operation required to coinpiite the new clique tree is a
bit more complicated and requires some restructuring of the tree. We will let T‘\T { I { }

- 21 -

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

[Input: T E 7~ and O G (K) , ~ G (K) for K E KG]
[Output: A minimum-diameter clique tree Tmin = (l C ~ , € ~ i ~) E 7 ~]
T ' e T

for K E KC;H do

[H +- G; H ' t G]
Emkn 0; CIf +- 0

[initialization]
a H , (K) aG(K); aff(l<) 4-- o c (K)
P H , (K) +- w (K) ; P H (W +- P G W)

C (K) +- 0
if OH(K) + ~ H (K) = IXl then CH +- LH U {It"}

end for
while IK,l 2 3 do [main loop]

P + f l
for K E CH do [build C,,, in sets C (P) , P E P]

[include Ir' in L,,,]

[include P in set of parents]

if oHt(I i) = O H (K) do
Select {K, P} E ET, for which [It' n PI = a~(1 t ')
P t P U { P)
if K E P then P t P - { IC}
C(P) t C (P) U { K } U C (K)

T' +- 'I" \,. {IC}
Update a ~ t (P) and p p (P)

[update children of PI
C(K) +- 0

[H' + H' \ S i m ~ (K) l

end if
end for

for P E P do
LEI e 0

[prepare for next iteration of the while loop]
[record new edges of T,;,] for IC E C (P) do

end for
Emin + Emin u {IC, P}

C (P) +- 0
QH(P) +- w (P) ; PH(P) +- PH@)

if OH(P) t P H (P) = [PI then CCEI + CH U { P }
end for
[H 4- H']

end while
if llClll = 2 do

end if
Emin t Emin U {It", I<'} where {IC, K'} = K H .

Figure 5.2: Detailed algorithm for generating a minimum-diameter clique tree.

- 22 -

denote the tree obtained by first performing the appropriate restructuring of 1'' and

then removing the leaf clique IC from the tree. The required restructuring operation

(needed to transform K into a leaf) bas already been introduced in Lemma 11 and
illustrated in Figure 4.3. Based on this restructuring operation, T'\T { K } is illustrated

in Figure 5.3.

T :

T \T {IC} :

Figure 5.3: Tra.nsformation of T into T { K } .
I--..- ._

Lewis et al. I231 used this technique for eliminating an arbitrary cliqiie K C CIJ

from a cliqine tree T' E TH,, in which K may or may not be a leaf. The interested

reader should consult [23] for a detailed description of the data structure required to

implement it efficiently. Section 5.3 contains a brief discussion of the more important
features of this data structure and how it is used.

5.2.2. Correct implementation of one iteration of the while loop

Lines 10-21 and 24-26 in Figure 5.2 are used to actually implement the operations
within the while loop in Figure 4.2. (AI1 other statements inside the while loop in
Figure 5.2 are used to update data for the next iteration through the while loop.) As
stated earlier, the for loop in lines 11-21 implements the algorithm for finding E,,,
displayed in Figure 5.1 and also builds a data structure used to collect the cliques in

.C,,,, and the new clique tree edges to be placed in E,,, by lines 24-26.
To see that the loop in lines 11 21 correctly implements the algorithm in Figure 5.1,

observe that lines 3, 4, 6, 7, and 8 of Figure 5.1 correspond directly to lines 11, 12, 18,
20, and 21 respectively of Figure 5.2. Lines 13-17 of Figure 5.2 manipulate the data

- 23 -

structure for collecting the leaves and new edges, as well as perform the operation in
line 5 of the algorithm in Figure 5.1.

Two issues connected with operations performed by this loop necd further discus-

sion. First, note that after the algorithm eliminates a leaf clique IC in line 18, the only
parameters updated are cqp(P) and P H / (P) in line 19. We must show that line 19 is

sufficient to maintain correct parameters u~t(1C’) and p f f t (K ’) for all cliques K’ E K H , .
Second, we must verify that the data structure correctly stores a maximum cardinality

leaf set C,,, and a set of new edges connecting each member of L,,, to an appropriate
“parent” clique.

The following proposition shows that with each graph reduction (line 18) the only

clique K‘ for which the values of a ~ t (K ‘) or p ~ j (K ‘) may have changed during the
iteration of the for loop is the clique P. As a result, line 19 of Figure 5.2 correctly
updates the only values qp(K’) and p ~ , (I i ’) (K’ E X l ~ t) that may require changing
due to the elimination of IC.

Proposition 1. Let K E .C,(S) and 11’ = H \ Sim(K). If (TH,(P) # UH(P) or
p ~ t (P) # ~ H (P) for any clique P E X l ~ p , then K I J (S) = { K , P}.

Proof Assume a ~ p (P) # ~ H (P) . It follows that any separator S’ E ~ H (P) for which
O H (P) = IS’] is not a member of M f f , . From property 4 of Lemma 9, the multiset of

separators of the reduced graph H’ = N \ Sirn(K) is given by Mff - {S}. It follows

that S’ is unique and moreover S‘ = S . By way of contradiction, assume lKkp(S)l 2 2.
Then by Lemma 6, q p (P) 2 IS] = a f ~ (P) . However, since K I I t = Klf - { K } , by

Lemma 6, C ~ H (P) 5]SI. Consequently, q p (P) = CTH(P) , contrary to our assumption
that cqp(P) # a&’). Therefore K H , (S) = { P } , which implies that K f l (S) = {IC, P}.

Now assume p ~ f (P) # pu(P) . Since S i r n ~ (P) C S i m ~ t (P) , the assumption im-

plies that there are some new simplicial nodes in P , ix. , , ! ! i m ~ (P) c S im~p(P) . Note
that the nodes of I€‘ that belong to fewer cliques than they did in If are precisely those

in S , and they belong to precisely one less clique (due to the reinoval of K) . As a result,

the new simplicial nodes of P must come from S . If IKslf(S)I 2 3, then removal of K
from 11 would result in no new simplicial nodes at all. Consequently, I t c ~ ~ (S) l = 2.
Since new simplicial nodes appear in P , it follows that Y niust be the other clique of
If that contains S , and thus KII (S) = {IC, P } .

We now turn our attention to the data structure used to maintain L,,, and the

new clique tree edges. This data structure is composed of the following sets:

1. Upon completion of the for loop in lines 11-21, the set P contains all the cliques
in the remaining chordal graph H’ that will serve as parents of the leaf cliques
eliminated by this major step.

2. Also upon completion of the loop, the set C (P) (P E P) contains all members of

C,,, that will become children of P in l’,in. That is, C,,, comprises the sets

- 24 -

C (P) (P E ’P), a,nd for each K f C (P) , the edge { K , P } will be added to E m i n .

These sets a.re computed as follows. Upon entry into the for loop, P = 0 (line 10)

and C (K) = 0 for every clique K E KH (lines 7, 17 and 27). As the loop processes a

clique X E C H that will be eliminated, it chooses in line 13 a neighbor P of 11 in the
current clique tree T’ that also contains S ~ ~ H (K) . Lines 14-15 update P by adding
P and removing K, if necessary. In line 16, 41 and the members of C (K) are merged
into C (P) , or loosely speaking , K and the ““children” of K are made children of P.
(This corresponds closely to the restructuring operation described in Lemma 11 and

illustrated in Figure 4.3).
‘To show that the scheme works, we need to show that three properties hold T L ~ Q ~

completion of the loop. The first two are trivial; we leave it to the reader to confirm
that

1. P C K H , , and

2. The union of the disjoint sets C (P) (P E P) is a maximum cardinality leaf set
emaz of a.

The following proposition states and proves the third required property.

Proposition 2. Upon completion of the for loop in lines 11-21 in Figure 5.2, we have

SeprT(11) c B for every clique I{ E C (P) (P E P).

Proof. The following simple induction argument suflices. The result holds vacuoiisly

before the first iteration of the loop is begun. Now we assume that it holds as an
iteration of the loop begins, and will show that it holds when the iteration is completed.

Let H’ be the graph remaining as the iteration begins, K the member of chosen
for elimination, and P the selected neighbor of IL‘ in the current clique tree (line 13).
Upon completion of the iteration, there is a new version of C (P) containing K , C (K) ,
and those cliques belonging to C (P) at the beginning of the iteration. By the induction

hypothesis, the property continues to hold for those cliques that were contained in

C (P) at the beginning of the iteration. Line 13 of the algorithm implies that the
property holds for K. Note that by property 2 above,
C E LH. By induction we have SepH(C) 5 IC. Moreover, since IC E LEI, we have

S e p H (C) C S‘eppi(IC), which by line 13 of the algorithm is a subset of P. Conseqiiently,

SepH(C) c P , and thus the result holds for the new version of C (P) . Finally, by
induction the property continues to hold for the sets C (P ’) , P’ f F’ - { P } , none of
which are modified during the iteration.

Now, choose C E C(1C).

It follows from Proposition 2 and the discussion preceding it that the edges stored
implicitly in the sets P and C (P) are precisely the edges that should be added to ET,,;,,
in lines 6 a i d 7 of Figure 4.2. The detailed algorithm adds these edges to Emin in lines

24-26.

- 25 -

5.2.3. Correct data to begin each iteration of the while laop

We have described the most important features of the detailed version of our minimum-
diameter clique tree algorithm, and have shown that lines 11-21 and 24-26 correctly

implement the lines inside the main loop in Figure 4.2. All that remains to be shown is
that the data structures and parameters are correct as each iteration of the main loop

in Figure 5.2 begins.

We have already discussed how a clique tree representation of H' is maintained.

More details on this issue can be found in the next subsection and in [23]. In addition,
from Proposition 1 we know that the only cliques for which OH,(&") # Q H (K) or

p p (K) # p ~ f (K) at the beginning of the loop in lines 23-30 are the cliques belonging

to P. Since line 28 updates ar~(1i) and ~ H (K) for each clique K E P, these values
will be correct a t the beginning of each iteration of the main loop. Thus, we need to

show only that LEI is correct a t the beginning of each iteration.

Note that line 6 uses Lemma 7 to construct the initial list L I ~ . The next proposition
justifies the use of lines 22 and 29 to construct the leaf sct LH to be used in the next

iteration.

Proposition 3. Upon entering the for loop in lines 23--30 of Figure 5.2, L I ~ C P.

Proof. Assume the algorithm is entering the loop, and let K E L H I . If K E C H I - LH,
then it follows from Lemma 7 that afp(1i) # O H (K) or pf;r f (K) # pli(K), and by
Proposition 1 we have K E 'P. Now assume Ir' E Lflt n LH. It follows that the

algorithm excluded li from L,,, because ap(1r') # a ~ (1 i) when K was considered
for inclusion. So again by Proposition 1 we have K E 'P.

5.3. Complexity

To facilitate our discussion of the algorithm's time complexity, define n := IV(, e := IEI,
m := IKGI, and Q := lKt l . (Recall that G = (V,E).) 'It is well-known that ~n 5 n
and q 5 e [12], and moreover in some practical applications Q << e, as pointed out in

An appropriate initial clique tree T f 7 G can be computed in O (n 4- e> time by

applying a slightly modified version of the maximum cardinality search algorithm to
the underlying chordal graph G 126,301. We should note however that the input clique
tree is not obtained in this fashion in the sparse matrix application area. A clique tree

stored in an appropriate data structure can be obtained very efficiently more or less as
a by-product of a data structure generated in the course of solving tlze linear system
at hand (see [23]).

A singly-linked list suffices to represent G f j throughout the computation (see lines 2,
6, 11, 22, 29). Thus, the time complexity of the initialization loop (lines 3 8) is O(m).

Consider the for loop in lines 11-21 ezcluding bines 13, 18, and 19. (These three

~ 3 1 .

- 26 -

lines are discussed later.) It follows trivially from Lemma 5 that ~LHI 5 21Lmazl.
Consequently, the total nnmber of iterations through this loop during the course of the
algorithm is O(m) . Efficient implementation of the sets P and C(P) in lines 14-17 is
quite easy. An array of markers can be used to detect membership in
time (see line 15). In addition, the set P should be implemented as a doubly-linked list

t o enable insertion and deletion of members in constant time (see lines 10, 14, 15, 23).
The sets C (P) can be implemented as singly-linked lists (see lines 7, 16, 17, 24, 27),
with a pointer to the tail of each list to implement the set union in line 16 in constant
time. Thus, the total work associated with the lines of the loop not excluded from

consideration is O(m).
Consider now the for loop in lines 23-30. The total work associated with lines 24-26

is O(m) . Since IPI 5 lLmaTl and each of the lines 27-29 is a constant-time operation,
the total work required by this loop is O (m) .

Finally, we consider the lines of the algorithm associated with accessing or changing

the clique tree used to represent the current reduced chordal graph (lines 1, 13, 18, and

19). The key lines to be discussed are 13, 18, and 19.
The data structure used to represent clique trees in [23] and the techniques used to

eliminate cliques from it are sufficient t o implement these three lines efficiently. The
data structure is a rooted clique tree with the nodes of each clique listed in ascend-

ing order by some perfect elimination ordering of the underlying chordal graph. (If
necessary, such an ordering can he obtained from the maximum cardinality search al-
gorithm used to construct the input.) The data structure initially has the children of
each parent listed in descending order by the size of the separator each shares with

the parent. Sorting the nodes of the cliques can be done in O(q) time, and sorting

the children in their lists can be done in O (n) time, both using a bucket sort. As the

algorithm proceeds, careful maintenance of a partial ordering in the lists of children
enables selection of P in line 13 after inspecting at most two neighbors of X in T’,
namely the parent of K and the first clique in its list of children. By thus avoiding a

search among all neighbors of li, line 23 becomes a constant time operation.

Computing 1” \r {A’} in line 18 and updating the parameters in line 19 requires a

few simple operations for each node of S e p H (K) and other work of lower order time

complexity. Consequently the total work done in lines 18 and 19 is O(q). The details

can be found in [23].
From the above discussion and the fact that rn 5 n, the algorithm has O (n + q)

total time complexity. This, together with the time required to obtain the input, gives
us an O (n + e> time algorithm.

6. Concluding remarks

The primary contribution of this paper is an efficient algorithm for generating a minimum-
diameter clique tree, along with an a.nalysis of its time complexity. The algorithm is a

- 27 -

natural generalization of the obvious greedy algorithm for rooting an ordinary tree in
order to minimize its height, and can be viewed as a block variant of the Jess and Kees
ordering algorithm [23,25]. To achieve this generalization, we defined the leaf set CG to

include every clique that is a leaf in some clique tree in IC.. We then introduced charac-

terizations of the cliques in LG that help to compute the set very efficiently. This was

followed by a characterization of maximum cardinality leaf sets. We then presented the
obvious greedy algorithm, which repeats the following major step until the graph has

been eliminated: compute a maximum cardinality leaf set, eliminate these leaf cliques
from the graph, and collect an appropriate set of clique tree edges incident upon these
leaves. We then showed that this algorithm generates a minimurn-diameter clique tree.

To demonstrate that the new algorithm executes in O (n + e) time, we addressed

several implementation issues, the most important of which is efficient computation of
the maximum cardinality leaf sets. An actual code based on the detailed algorithm

would maintain a clique tree representation of the current chordal graph that may not

have minimum diameter. Lewis et al. [23] contains details about the data structure

used to store this sequence of clique trees and how they are used to implement the

elimination process very efficiently.

We believe that our algorithm will be useful in a number of application areas. Of
particular interest to us is its use in an efficient implementation of a parallel sparse
Cholesky factorization algorithm and also an efficient parallel method for calculating
probability distributions in a probabilistic knowledge-based system. The next two
paragraphs briefly discuss the application of our results in these two areas.

Gilbert and Schreiber [15] have recently implemented a fine-grained parallel sparse
Cholesky algorithm on the Connection Machine, a massively-parallel distributed-memory

SIMD machine (Single-Instruction-Multiple-Data). Their algorithm is a highly parallel

variant of the multifrontal method for sparse factorization [7,24]. To improve perfor-

mance they use an elimination sequence obtained by repeating the following step until

all nodes have been eliminated: remove all simplicial nodes from the current chordal

graph. Our results can be used to demonstrate that the number of major steps taken
by their ordering algorithm, and consequently their factorization algorithm, is the min-
imum possible. This is of practical importance because between each major step (and
only then) their factorization algorithm must issue calls to the Connection Machine’s

general router t o accumulate results and communicate them from one processor to an-

other t o set up the next major step. Calls to the general router are so expensive that

the height of the clique tree, though not the dominant time-complexity tcrm in a theo-

retical sense, is nonetheless dominant in the practical sense. Their ordering algorithm

is based on this assessment, and the analysis in this paper can be used to demonstrate

that they have minimized the number of calls to the router. In addition, the results in
this paper possibly provide a basis for reorganizing their factorization algorithm to im-
prove its efficiency; however, further study will be required to determine if substantial
improvements are indeed possible.

- 28 -

Lauritzen and Spiegelhalter [22] have presented a technique for calculating probabil-

ity distributions in knowledge-based systems in which probabilities of discrete-valued
random variables are an inherent component of the encoded knowledge. Briefly, a

probabilistic knowledge-based system is a Markov network M = (V, E M , P r) . (M is a

digraph with nodes V being the system random variables, directed arcs EM taken from

V x V, and probability distributions Pr corresponding to the acyclic arc-structure.)
The goal is to maintain the probability distributions Pr as they vary with time and

queries of the network. To achieve this, the directed graph M is first converted into the
corresponding undirected graph G, then edges are added as needed to convert G into a

chordal graph. The probability distributions can be maintained with added efficiency

by using a clique tree representation of G to organize the computation. Backward and
forward propagation of data in the clique tree, which in practice may require the manip-
ulation of large tables of probabilities, is a fundamental part of the method. England

et al. [9,10] describe aspects of the Pr component of M that render certain sections
of the data propagation computationally independent. This data independence can

be exploited not only to avoid unnecessary computations in a conventional sequential

implementation, hut also to allow simultaneous execution within as many cliques as

possible in a parallel implementation. To complement these results and allow for an
even greater amount of parallelism in the solution process, it may be advantageous to

further exploit the structure of the underlying graph of N . One way to do this is to
use a clique tree representation of minimum diameter.

There are several open questions worth mentioning. In light of the algorithm’s pos-
sible applications, it is worthwhile to consider how to implement it (or some variant

thereof) to run efficiently on a parallel machine, particularly a fined-grained machine
such as the Connection Machine. Our algorithm finds a maximum-weight, minimum-

height spanning tree of the clique intersection graph of a given chordal graph. Camerini

et al. [5] have shown that for general weighted graphs this problem is NP-complete. It

would be interesting to know whether or not a maximum-diameter clique tree (or equiv-

alently a maxirnum-weight, maximum-height spanning tree of the clique intersection
graph of G) can be found in polynomial time.

Acknowledgments. The authors would like to thank Eduardo D’Azevedo, John

Gilbert, Eric Kirsch, and Esmond Ng for many valuable comments and suggestions.

7. References

[l] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database systems. J . Assoc. Cornput. Mach., 30:479--513, 1983.

[2] P. A. Bernstein and N. Goodman. Power of natural semijoins. SIAM J. Comput.,
10:751--771, 1981.

- 29 -

[3] J.R.S. Blair, R.E. England, and M.G. Thomason. Cliques and their separators
in triangulated graphs. Technical Report CS-73-88, Department of Computer

Science, The University of Tennessee, Knoxville, Tennessee, 1988.

[4] P. Buneman. A characterization of rigid circuit graphs. Discrete Math., 9:205-212,
1974.

[5] P.M. Camerini, G. Galbiati, and F. Maffioli. Complexity of spanning tree prob-

lems: Part I. European Journal of Operational Research, 5:346-352,1980.

[6] G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. IIamburg, 25:71-76,
1961.

[7] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
systems of equations. ACM Trans. Math. Software, 9:302-325, 1983.

[8] I. S. Duff and J. K. Reid. A note on the work involved in no-fill sparse matrix

factorization. IMA J. Numer. Anal., 3:37-40, 1983.

[9] R.E. England. Clique graph models for independent computations. PhD thesis,

Dept. of Computer Science, The University of Tennessee, 1989.

[lo] R.E. England, J.R.S. Blair, and M.G. Thomason. Independent computations in
a probablistic knowledge-based system. Technical Report CS-90-128, Department
of Computer Science, The University of Tennessee, Knoxville, Tennessee, 1991.

[ll] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes.
J . Assoc. Comput. Mach., 30:514-550, 1983.

[12] D. R. Fulkerson and 0. A. Gross. Incidence matrices and interval graphs. Pncific
J. Math., 15:835-855, 1965.

[13] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal

graphs. J . Combin. Theory Ser. B, 16:47-56,1974.

[14] F. Gavril. Generating the maximum spanning trees of a weighted graph. J.
Algorithms, 8:592-597, 1987.

[15] J.R. Gilbert and R. Schreiber. Highly parallel sparse Cholesky factorization. Tech-

nical Report CSL 90-7, Xerox Palo Alto Research Center, 1990. (submitted to
SIAM J . Sei. Statist. Comp.).

[16] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

[17] C-W. Ho and R. C. T. Lee. Efficient parallel algorithms for finding maximal
cliques, clique trees, and minimum coloring on chordal graphs. Inform. Process.
Lett., 28:301-309, 1988.

- 30 -

[18] C-W. €10 and R.. C. T. Lee. Counting clique trees and computing perfect elimina-
tion schemes in parallel. Inform. Process. Lett., 31:61-68, 1989.

[19] F.V. Jensen. Junction trees and decomposable hypergraphs. Technical report,
JUDEX, Aalborg, Denmark, 1988.

[20] J.A.G. Jess and H.G.M. Mees. A data structure for para,llel L / U decomposition.
IEEE Trans. Comput., C-31:231--239, 1982.

[21] E.S. Kirsch. Practical pa.raUc1 algorithms for chordal graphs. Master's thesis,

Dept. of Computer Science, The University of Tennessee, 1989.

[22] S.L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their applications to expert systems. J . Iloyal Statist.
SOC., ser B, 50:157-224, 1988.

[23] J.G. Lewis, B.W. Peyton, and A. Pothen. A fast algorithm for reordering sparse
matrices for parallel factorization. SIAM J . Sci. Stat. Comput., 10:1156-1173,
1989.

[24] J. W-H. Liu. The multifrontal method for sparse matrix solution: theory a n d
practice. Technical Report CS-90-04, Department of Computer Science, York

University, North York, Ontario, Canada, 1990.

[25] J. W-H. Liu and A. Mirzaian. A linear reordering algorithm for parallel pivoting
of chordal graphs. SIAM J . Disc. Math., 2:100-107, 1989.

[26] B.W. Peyton. Some applications of clique trees to the solution of sparse linear
systems. PhD thesis, Dept. of Mathematical Sciences, Clemson University, 1986.

[27] R.C. Prim. Shortest connection networks and some generalizations. Bell §ystem
Technical Journal, pages 1389-1401, 1957.

[28] D.J. Rose. A graph-theoretic study of the numerical solution of sparsc positive

definite systems of linear eqiiations. In R. C. Read, editor, Graph Theory and
Computing, pages 183-217. Academic Press, 1972.

[29] R.E. Tarjan. Data Structures and Network Algorithms. SIAM, Philidelphia, 1983.

[30] R.E. 'l'arjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J . Comput., 13:566-579, 1984.

[31] J.R. Walter. Representations of rigid cycle graphs. PhD thesis, Wayne State
University, 19 72.

- 31 -

A. Notation

For easy reference we have included the following table of informal definitions for most
of the notation introduced in the paper.

- 32 -

~~ ~ ~

G = (V, E)

T = (KG,€) -
A chordal graph (G, G', H and HI) .

A clique tree (T , T', Tmst, Tct, Talg, and T,nin)s

The maximal cliques of G (K G , K G I , K I I , and KH!).

The cliques containing S C V (K (S) , JCH(S), XH(S'), and -

KIP (5' 1.

7 G

€

-

-
The clique trees of G (7;? TGI, 7 ~ , and 7 ~ 1) .

The edges of a clique tree (E , € T I , and Emin) .

M T

M c

-

-
The multiset of separators of 1' (M T and M p) .

The multiset of separators of G (M G , MGI , M H , and

M H ') .

- The set of separators included in clique K (S(1i) and

The set of maximal separators among those in clique I(
(S(Ii) aad S H (K)) .
The set of leaf separators (~ (C G) and ~ (L H)) .

S H (K)).
-

-

-

--

-

-~

The leaves of T (&, LTI, i c ~ ~ , ~ , and .Cy,,,,,,).

The leaf cliques of G' (LG, LGI, C H , and e,,).
A maximum cardinality set of leaf cliques.

The leaves 66' E: CG for which s(K) = (5') (L (S) , C(S'),
L H (S) , CH(S ') , and C:H(S")).

- Set difference operator.
-

--

G \ A is the subgraph of G induced by V - A .
T\T (K } is the removal of fi E CG froin T , with restructuring
when Ii $! Ly-.

- The size of the largest separator in S(#) (a (#) , O G (K) ,
OH(K) , and ae,(In')).

The number of simplicial nodes in clique K (p (K) , p ~ (I c) , -

P H (q and P H ' (K)) .

- 33 -

ORNL/TM-11850

INTERNAL DISTRIBUTION

1. B. R. Appleton
2-3. T. S. Darland

4. E. F. D’Azevedo
5. J . J . Dongarra
6. G . A. Geist
7. E. R. Jessup
8. M. R. Leuze
9. E. G. Ng

10. C. E. Oliver
11-15. B. W. Peyton
16-20. S. A. Raby

21. C. H. Romine

22. T. H. Rowan
23-27. R. F. Sincovec
28-32. R. C. Ward

33. P. 1%. Worley
34. Central Research Library
35. ORNL Patent Office
36. K-25 Applied Technology Li-

37. Y-12 Technical Library
38. Laboratory Records - RC

brary

39-40. Laboratory kcords Department

EXTERNAL DISTRIBUTION

41. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

42. Donald M . Austin, 6196 EECS Bldg., University of Minnesota, 200 Union Street,
S.E., Minneapolis, MN 55455

43. Robert G . Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

44. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

45. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

46. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87 185

47. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South C a s Avenue, Argonne, IL 60439

48. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

49-53. Jean R. S. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

54. Heather Booth, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, T N 37996-1301

55. Roger W. Brockett, Wang Professor of Electrical Engineering and Computer Sci-
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 02138

56. James C. Rrowne, Department of Computer Science, University of Texas, Austin,
TX 78712

- 34 -

57. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.0. Box 3000, Boulder, CO 80307

58. Donald A. Calahao, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

59. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

60. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

61. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

62. Jagdisb Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

63. Eleanor Chn, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

64. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

65. Tom Coleinan, Department of Computer Science, Cornell University, Ithaca, NY
14853

66. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

67. Andy Conn, IHM T. J . Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

68. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

69. Jane K. Cullum, 114M T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

70. George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

31. George J . Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

72. Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, Florida 3261 1-2024

73. John J . Dorning, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

74. Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

75. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

76. Stanley IEisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

- 35 -

77. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden

78. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

79. Robert E. England, Mathematics and Computer Science Department, Northern
Kentucky University, Highland Heights, KY 41076-1448

80. Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seat-
tle, WA 98124-0346

81. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 13244-4100

82. Paul 0. Frederickson, NASA A m a Research Center, RIACS, M/S TO45-1, Moffett
Field, CA 94035

83. Fred N. Fritsch, Computing & Mathematics and Statistics Division, Lawrence
Livermore National Laboratory, P.O. Box 808, L-316 Livermore, CA 94550

84. Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

85. K. Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

86. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47405

87. Feng Gao, Department of Computer Science, University of British Columbia, Van-
couver, British Columbia V6T 1W5, Canada

88. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

89. C. William Gear, Computer Science Department, University of Illinois, IJrbana,
IL 61801

90. W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-SO, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8

91. J . Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3 6 1

92. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

93. Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

94. Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA
94551-0969

95. John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011

96. Per Christian Hansen, UCI*@ Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

97. Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, T X 77042-3020

- 36 -

98. Michael T. Heath, Center for Supercomputing Research and Development, 305
Talbot Laboratory, University of Illinois, 104 South Wright Street, Urbana, IL
61801-2932

99. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.Q. Box 481, Houston, ‘l’X 77001

100. Nicholas J. Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England

101. Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

102. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

103. Ilse Tpsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

104. Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta T6G 2H1, Canada

105. Lennast Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
021,4242 14

106. Barry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

107. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

108. Malvyn 11. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

109. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

110. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

11 1. Robert J . Kee, Division 8245, Sandia National Laboratories, Livermore, CA 94551-
0969

112. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, IIouston, T X 77001

113. Eric S. Kirsch, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, T N 37996-1301

114. Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office 6-236 Germantown, Washington, DC 20585

115. Michael A. Langston, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

116. Richard Lau, Office of Naval Research, Code IIllMA, 800 N. Quincy Street,
Boston Tower 1 Arlington, VA 22217-5000

117. Alan J. Laub, Department of E:lectricd and Computer Engineering, University of
California, §anta Barbara, CA 93106

118. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 2‘7709

- 37 -

119. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

120. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

121. James E. Leks, Rt. 2, Box 142C, Broadway, VA 22815

122. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

123. Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston,
TX 77042-3020

124. Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London E l 4NS, England

125. Arno Liegrnann, c/o ETH Rechenzentrum, Clausiusstr. 55, CH-8092 Zurich, Switzer-
land

126. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

127. Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

128. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca, NY
14853

129. Brian A. Malloy, 216 Duke Street, Clemson, SC 29631

130. Thomas A. Manteuffel, Department of Mathematics, University of Colorado ~

Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364

131. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

132. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125

133. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

134. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

135. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

136. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

137. Charles F. Osgood, National Security Agency, Ft. George G. Meade, MD 20755

138. Chris Paige, OAIIDR, McGill University, McConnell Engineering Building 3480
University Street Montreal, PQ Canada H3A 2A7

139. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 29634-1906

140. Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

- 38 -

141. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC

142. Daniel J. Pierce, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

143. Robert J . Plemmons, Departments of Mathematics and Computer Science, Box
731 1, Wake Forest University Winston-Salem, NC 27109

144. Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, T N 37996-1301

145. ,41ex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

27706

146. Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-

147. Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

148. S. S. Ravi, Department of Computer Science, LI67A, 1400 Washington Avenue,
Albany, N Y 12222

140. John K . Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

150. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

151. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

152. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

153. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

154. Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

155. Axel Ruhe, Department uf Computer Science, Chalrners University of Technology,
S-41296 Coteborg, Sweden

156. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

157. Ahmed H. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

158. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

159. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

160. Martin 11. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

161. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

4040 Hafrsfjord, Norway

- 39 -

162. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, T X 75275

163. Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

164. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

165. Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

166. Anthony Skjellum, Lawrence Livermore National Laboratory, 7000 East Ave., 1,-
316, P.O. Box 808 Livermore, CA 94551

167. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0. Box
1892, Houston, TX 77251

168. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

169. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. BOX 3000,
Boulder, CO 80307

170. Michael G. Thomason, Department of Computer Science, Ayres Hall, University
of Tennessee, Knoxville, T N 37996-1301

171. Philippe Toint, Department of Mathematics, University of Namur, FUNOP, 61
rue de Bruxelles, B-Nsmur, Belgium

172. Bernard Tourancheau, LIP, ENS-Lyon, 69364 Lyon cedex 07, France

173. Hank Van der Vorst, Department of Techn. Mathematics arid Computer Science,
Delft University of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

174. Charles Van Loan, Department of Computer Science, Cornel1 University, Ithaca,
NY 14853

175. Jim M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1W5, Canada

176. Udaya B. Vemulapati, Department of Computer Science, University of Central
Florida, Orlando, FL 32816-0362

177. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

178. Phuong Vu, Cray Research, Inc., 1345 Northland Dr., Mendota Heights, MN
55120

179. Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall,
Clemson Tiniversity, Clemson, SC 29631

180. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. Box
1892, Houston, TX 77251

181. Andrew B. White, Computing Division, Los Alanios National Laboratory, P.O. Box
1663, MS-265, Los Alamos, NM 87545

182. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

- 40 -

183. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, T X 78731

184. Earl Zmijewski, Department of Computer Science, University of California, Santa
Barbara, CA 93106

185. Office of Assistant Manager for Energy Research and Development, U S . Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N

186 - 195. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

37831-8600

